
JOURNAL OF AEROSPACE COMPUTING, INFORMATION, AND COMMUNICATION
Vol. 2, January 2005

44

Efficient Search for Trade-Offs by Adaptive Range Multi-
Objective Genetic Algorithms

Daisuke Sasaki*
University of Southampton, Southampton, SO17 1BJ, United Kingdom

and
Shigeru Obayashi†

Institute of Fluid Science, Tohoku University, Sendai, 980-8577, Japan

Trade-offs is one of important elements for engineering design problems characterized
by multiple conflicting objectives that needs to be simultaneously improved. Further, in
many problems such as aerodynamic design, due to computational reasons, only a limited
number of evaluations can be allowed for industrial use. This paper proposes new efficient
Multi-Objective Evolutionary Algorithms (MOEAs), Adaptive Range Multi-Objective
Genetic Algorithms (ARMOGAs), to identify trade-offs among objectives using a small
number of function evaluations. The search performance of ARMOGAs is examined by
using four different multi-objective analytical test problems. ARMOGAs are also compared
with another MOEA. Although the number of evaluations is limited, ARMOGAs showed
good performance. In addition, Sequential Quadratic Programming and Dynamic Hill
Climber methods are applied to obtain trade-offs for the same problems. These gradient-
based methods had some difficulties in identifying trade-offs.

Nomenclature

ctol = tolerance of constraint

dij = distance in objective-function space between solutions i and j

Fi = fitness value of solution i

Fi’ = Shared fitness value of solution i

fki = k-th Objective-function value of solution i

fli = half length of plateau region in i-th phenotype design variable

G = constraint

M = number of objective functions

Msa, Mra starting generation of range adaptation

Mra = interval generation of range adaptation

N = number of solutions

N(0,1) = normal distribution

nci = niche count of solution i

Received 18 August 2004; revision received 4 November 2004; accepted for publication 20 December 2004. Copyright ©

2005 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for
personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923; include the code 1542-9423/04 $10.00 in correspondence with the CCC.
*Research Fellow, School of Engineering Sciences, Highfield. AIAA Member.
†Professor, Katahira 2-1-1. Associate Fellow AIAA.

SASAKI AND OBAYASHI

 45

pi = i-th phenotype design variables

ran1 = uniform random number defined in [0,1]

Ri = rank of i-th solution

ri = i-th genotype design variable defined in [0,1]

uk, lk = maximum and minimum of k-th objective-function value

xi = i-th design variable

α, β = weights for utility function

αr = ratio of population assigned to foot region in range adaptation

αshare = sharing function parameter

ηc = SBX parameter

ηm = polynomial mutation parameter

µ(k) = number of solutions having rank k

µi = average of i-th phenotype design variable

σi = variance of i-th phenotype design variable

σshare = threshold of sharing function

I. � Introduction
ndustrial design problems often have many design objectives with conflicting requirements. For example, high
thrust, low weight and low noise are required when a whole gas-turbine engine is considered. Also, high pressure

rise and low total pressure loss are required for compressor design. These problems are typical Multi-Objective
(MO) optimization problems. The aim of MO optimization is to determine a single best design that satisfies
designers’ requirement for each objective. One way is to find a solution based on a trade-off that is determined
empirically or interactively by designers. Another way is to first find trade-offs between multiple objectives and then
designers select the best solution based on a suitable criterion. In the latter case, the trade-offs are represented by
non-dominated solutions, which are solutions that are not dominated by any other solutions as shown in Fig. 1. To
select the best solution from a set of non-dominated solutions, it would be better to sample many non-dominated
solutions. Ideally, Pareto solutions, which mean global non-dominated solutions that form global trade-offs, should
be obtained.

Multi-Objective Evolutionary Algorithms (MOEAs) have gained popularity because of their ability to find
global trade-offs.1-4 MOEAs search from multiple points in the design space simultaneously and stochastically,
instead of moving from a single point deterministically like gradient-based methods. This feature prevents design
candidates from settling in local optima, and has the capability of finding global optimal solutions. MOEAs can
search for optimal solutions in non-smooth design spaces because MOEAs do not require any sensitivity derivatives.
It also means that MOEAs are not prone to premature failure even if the design space is very noisy. Various
evaluation tools, which compute objective-function values such as Computational Fluid Dynamics (CFD), are easily
coupled with MOEAs, because MOEAs only require the objective-function values. In addition, MOEAs can be
easily parallelized because of multiple-point search. Due to these advantages, MOEAs have been applied for various
multi-objective aerodynamic optimization problems.5-15

However, as is well known, MOEAs require a large number of evaluations. This could be a major inhibitor in
using MOEAs for aerodynamic optimization problems using time-consuming high-fidelity Computational Fluid
Dynamics (CFD), especially in aerospace industries. Therefore, more efficient MOEAs are necessary to conduct
sophisticated aerodynamic optimizations using limited computer resources. Real-coded Adaptive Range Multi-
Objective Genetic Algorithms (ARMOGAs) have been developed for the purpose of reducing the number of
evaluations to make it practical to apply MOEAs to aerodynamic optimization problems. The present method will be
also useful for various kinds of multi-objective optimization problems, which require time-consuming evaluation
tools.

I

SASAKI AND OBAYASHI

 46

Fig. 1 Trade-off of two-objective minimization problem, which is represented by non-dominated solutions.

 The ARMOGAs introduce the range adaptation, which changes the search region according to the statistics of
better solutions. Here, a normal distribution is used to represent the design space efficiently, which was originally
proposed by Arakawa and Hagiwara in binary-coded Adaptive Range Genetic Algorithms (ARGAs) for single-
objective problem.16,17 Oyama developed real-coded ARGAs for design optimization of transonic wings.18 In this
study, real-coded ARGAs are extended to MO optimization problems to treat multiple solutions and to maintain the
diversity of solutions because the aim of MO problems is to collect multiple non-dominated solutions, unlike single-
objective problems.

In this paper, the performance of ARMOGAs is studied using four different MO analytical test problems.
ARMOGAs are compared to Non-dominated Sorting Genetic Algorithms 2 (NSGA2),2 which has recently emerged
as a powerful MOEA, and two gradient-based methods, Sequential Quadratic Programming method (SQP)19 and
Dynamic Hill Climber method (DHC),20 both of which are available in Smart Optimization For Turbomachinery
(SOFT).21

II. � Adaptive Range Multi-Objective Genetic Algorithms
Evolutionary Algorithm (EA) is a generic name for population-based optimization methods, such as Genetic

Algorithms (GAs), Evolutionary Strategies (ESs), Genetic Programming (GP), etc.22 The proposed optimization
algorithm is based on GAs.1,3,4,23 GAs simulate the mechanism of natural evolution, where a biological population
evolves over generations to adapt to an environment by selection, crossover, and mutation. Fitness, the individual,
and genes in the evolutionary theory correspond to the objective function, design candidate, and design variables in
design optimization problems, respectively.

GAs have been extended successfully to solve MO problems.3 GAs use a population to seek optimal solutions in
parallel. This feature can be extended to seek Pareto solutions in parallel without specifying weights between the
objective functions. The resultant Pareto solutions represent global trade-offs.

Except for the introduction of range adaptation operator, the present ARMOGAs’ operators are the same as the
MOEAs. Therefore, each genetic operator of the MOEAs adopted here is firstly explained. Figure 2 shows the
flowchart of the present MOEAs based on GAs. Then the unique procedure of ARMOGAs is described in this paper.

Initial population

Evaluation

Selection

Crossover

Mutation

Termination criteria

Archive

Fig. 2 Flowchart of present MOEAs.

SASAKI AND OBAYASHI

 47

A. Algorithm of Multi-Objective Evolutionary Algorithms
1. Binary and Floating-Point Representation

In GAs, binary numbers are often used to represent design parameter values. However, in many cases such as
aerodynamic design optimization, it is more straightforward to use real numbers. Thus, the floating-point
representation is adopted here.
2. Coding and Decoding

GAs require both phenotype and genotype design variables. The phenotype design variable represents the actual
design variables, such as length, angle, shape, etc. On the other hand, the genotype design variable is a binary
number (Binary GAs) or a real number in [0,1] (Real-coded GAs). The operators of many GAs require genotype
representation of design parameters. Therefore, actual design variables (phenotype representation) must be
converted to the genotype representation. For real-parameter design problems, such as aerodynamic optimizations, it
is not favorable to use binary representation because phenotype design space is not continuous by binary
representation. Therefore, the present MOEA adopts a floating-point representation. For the floating-point
representation, the i-th design parameter pi is coded to genotype value ri, which is normalized in [0,1]:

minimaxi

minii

i
pp

pp
r

,,

,

!

!
= (1)

3. Initial Population
The results of GAs can be affected by the initial population if the number of individuals per generation is small.

It would be better to generate initial individuals which are uniformly spread out in the design space. Here, the initial
population is generated randomly.
4. Evaluation

As GAs use only objective-function values for optimization, no modification of evaluation tools is required. In
addition, it is easy to apply Master-Slave type parallelization systems to conserve computational resources because
GAs do not have to compute design candidates sequentially, unlike gradient-based methods.
5. Selection

GAs choose superior individuals as parents to generate new design candidates. Therefore, selection has a large
influence on search performance of GAs. For single-objective optimizations, as the aim is to obtain the best solution,
selection is based on the fitness value given by the objective-function value. However, Pareto-optimal solutions
must be obtained for MO optimization. To obtain Pareto solutions effectively, each individual is assigned a rank
based on the Pareto ranking method and fitness sharing.1 In the present MOEAs, Fleming and Fonseca’s Pareto-
ranking method3 is adopted. Each individual is assigned a rank according to the number of individuals dominating it,
as shown in Fig. 3. The fitness value (Fi) of individual i is assigned based on the following equation:

 ()1)(5.0)(
1

1
!!!= "

!

= i

R

ki
RkNF

i

µµ (2)

where N is the number of solutions, and µ(Ri) is the number of solutions in rank Ri. Thereafter, the standard sharing
approach is adopted to prevent choosing similar solutions as parents and to maintain diversity of the population.4
The assigned fitness values are divided by the niche count:

 i

i

i nc

F
F =
!

 (3)

where niche count nci is calculated by summing the sharing function values:

 ! =
=

N

j iji dshnc
1

)((4)

SASAKI AND OBAYASHI

 48

!!
!
!

"

#
<$$

%

&
!!
"

#
'

=

others

d
d

dsh shareij

share

ij

ij

share

 0

 1
)(

(
(

)

 (5)

 !
=

""
#

$
%%
&

'

(

(
=

M

k kk

j

k

i

k
ij

lu

ff
d

1

 (6)

where uk is the maximum objective-function value of k at the present generation, lk is the minimum objective-
function value of k at the present generation, and αshare is the sharing function parameter. If the distance between
individuals i and j is lower than σshare, then niche count increases to reduce the fitness of the solution. The
normalized niching parameter σshare is proposed as follows:

M

share

M

share
N)(1)1(!! "=#+ (7)

where M is the number of objective functions.

Fig. 3 Rank of solutions based on Pareto ranking method3 (Rank 1 means non-dominated solutions).

After shared fitness values are determined for all individuals, the stochastic universal selection (SUS)24 is
applied to select better solutions for producing a new generation. Unlike roulette wheel selection method, only one
random number is chosen for the whole selection process for SUS. As many different solutions should be chosen to
maintain the diversity, a set of N equi-spaced numbers is created as shown in Fig. 4.

Fig. 4 SUS method.24

SASAKI AND OBAYASHI

 49

6. Crossover

Crossover is an operator that interchanges the genotype parameters of selected parents and produces two
different design candidates. The probability of crossover and the crossover method can have a significant impact on
the search performance of GAs.

For binary representations, crossover interchanges the bit strings of selected parents. However, many crossover
methods have been proposed for real-parameter GAs. Simulated binary crossover (SBX)1 operator creates offspring
based on the distance between the parents as shown in Fig. 5. If the two parents are closely related to each other,
SBX is likely to generate new offspring near the parents. On the other hand, if the two parents are more distantly
related, it is possible for solutions to be created away from the parents. This operator is described as follows:

!

Child1= 0.5 1+ "q() #Parent1+ 1$ "q() #Parent2[] (8a)

!

Child2 = 0.5 1" #q() $Parent1+ 1+ #q() $Parent2[] (8b)

!

"q =

(2 # ran1)1 ($c +1) %1

1

2 # (1% ran1)

&

'
(

)

*
+

1 ($c +1)

,

-
.

/
.

 (8c)

where ran1 is an uniform random number in [0,1].
7. Mutation

Mutation maintains diversity and expands the search space by changing the design parameters. If the mutation
rate is high, a GA search is close to a random search and results in slow convergence. Therefore, an adequate value
is required for the mutation rate. For binary representation, mutation is performed to reverse the bit strings. It is not
as simple for real-coded GAs as for binary GAs. This is realized by adding disturbances to the design parameters.

Polynomial mutation1, which is similar to the SBX operator described in Sec. 2.1.6, has been proposed:

!

Childmutation = Childcrossover + ri,max " ri,min().# (9)

where ri,max, ri,min are upper and lower boundaries of i-th genotype design variable, and δ is calculated from the
polynomial probability distribution:

!

" =
(2 # ran1)1 ($m

+1) %1

1% 2 # (1% ran1)1 ($m
+1)[]

&

'
(

) (
 (10)

where the value of ηm determines the perturbation size of mutation.

SASAKI AND OBAYASHI

 50

Fig. 5 Sketch of simulated binary crossover.

8. Archiving

To obtain Pareto solutions efficiently, it would be better to include past excellent solutions as current solutions.
In the present MOEAs, two archiving techniques are combined. The first is the Best-N technique, which keeps the
latest better solutions and parent generation of (x-1)N size and uses these solutions for the selection process. The
second is the standard archiving technique, which is comprised of all previous solutions to prevent the loss of
previous excellent solutions.1 These two methods are combined in the present MOEAs as shown in Fig. 6. The
procedure is as follows:

1) Fitness values based on the fitness assignment operators in Sec. 2.1.5 are assigned to the present
population and the Best-xN group. Here, x is set to 2.

2) According to the fitness value, the top N individuals are chosen for the next step. In addition, the top (x-
1)N individuals are preserved as the Best-xN group.

3) Fitness values are assigned to chosen N individuals.
4) SUS is used to select the parents. Then, crossover and mutation are applied to generate new individuals.
5) Several individuals in the Best-xN group are replaced by the same number of individuals from the

archives.

9. Constraint-Handling Technique
In many real-world problems, it is common to have several constraints. Many constraint-handling techniques

have been proposed,1 however, it is not easy for GAs to solve constrained-problems compared to gradient-based
methods, such as the Modified Method of Feasible Direction (MMFD)19. A popular and easy constraint-handling
strategy is the penalty function approach in which a penalty value is added to the objective-function value if the
design violates the constraint. Although several penalty functions have been proposed, it is difficult to choose
appropriate penalty values a priori.

In the present MOEAs, an extended Pareto ranking method based on constraint-dominance is used. Constraint-
dominance is defined as follows1:

A solution xi is said to ‘constrain-dominate’ a solution xj, if any of the following conditions are true:
1) xi is feasible and xj is not.
2) xi and xj are both infeasible, but xi has a smaller constraint violation.
3) xi and xj are feasible and xi dominates xj in the usual sense.

Figure 7 shows the example of a Pareto ranking method based on constrain-dominance for the two-objective
minimization problem with one constraint. Based on this approach, it would be easy to generate new offspring that
satisfy the constraints because feasible solutions are likely to be chosen as the parents. However, it is possible for
good solutions to lie close to the edge of the feasible and infeasible region in many design problems. Therefore, an
adequate tolerance of the constraint (ctol) should be introduced to the constraint violation:

 0!"
tol
cG (11)

SASAKI AND OBAYASHI

 51

where G is an original constraint less than zero. As the tolerance ctol is introduced, solutions having smaller violation
than ctol are assumed to be feasible for constraint-dominance. This enables EAs to search for solutions near the
boundary between feasible and infeasible solutions.

To tackle aerodynamic optimization using time-consuming CFD codes, it is unfavorable to generate many
violated candidates. If it is possible to estimate the feasibility of any candidate designs efficiently before time-
consuming CFD computation, it is reasonable to prevent generating such solutions, as it would be a waste of
computational time in CFD.

Archiving

(all solutions)

Present population

[N individuals]

Fitness assignment

[xN individuals]

Best-xN

[(x-1)N individuals]

Selection

for top N population

Fitness assignment

[N individuals]

Selection

for mating pool

Crossover and

mutation

Better

individuals

Fig. 6 Archiving procedure used in the present MOEAs.

Fig. 7 Example of rank based on constraint-dominance definition.

B. Algorithm of Adaptive Range Multi-Objective Genetic Algorithms
To reduce the large computational burden, the total number of function evaluations need to be reduced On the

other hand, a large string length is necessary for real parameter problems. ARGAs, originally proposed by Arakawa
and Hagiwara, are a quite unique approach to solve such problems efficiently.16,17 Oyama developed real-coded
ARGAs and applied them to transonic wing optimization.18 According to the encoding system (Fig.8) based on
normal distribution built by population statistics consisting of better designs computed before, ARGAs can find near
optimal designs efficiently.

The basis of ARMOGAs is the same as ARGAs, but a straightforward extension may cause problems with the
diversity of the population. Therefore, ARMOGAs have been developed based on ARGAs to deal with multiple
Pareto solutions for multi-objective optimization. In addition, archiving and constraint-handling techniques are
considered to select better solutions to decide new search range.

This section describes the genetic operators of ARMOGAs. ARMOGAs differ from MOEAs described above
with regard to the application of range adaptation. Therefore, before starting range adaptation, the MOEAs and

SASAKI AND OBAYASHI

 52

ARMOGAs in the present study are identical. A flowchart of ARMOGAs is shown in Fig. 9. The range adaptation
starts at Msa generation and is carried out every Mra generations. The new decision space is determined based on the
statistics of selected better solutions, and then the new population is generated in the new decision space. Thereafter,
all the genetic operators are applied to the new design space.

ARMOGAs are able to find Pareto solutions more efficiently than conventional MOEAs because of the
concentrated search of the promising design space out of the large, initial design space. ARMOGAs can adapt their
search region as shown in Fig. 10. In contrast, the search region of conventional EAs remains unchanged. The
encoding system is based on the normal distribution with the plateau region as shown in Fig. 10. The selected
designs are located in the plateau region, and the normal distribution region is determined based on the population
statistics to preserve the diversity of candidate solutions. Re-initialization helps to maintain the population diversity.
However, there is a conflict between concentration of the search space and the maintenance of population diversity.
1. Sampling for Range Adaptation

Range adaptation needs to select superior solutions to determine the new design space based on some statistics.
The solutions, which have higher fitness values based on Pareto ranking method, are selected to determine the
reasonable search range. It would be better to select many solutions to prevent the creation of new search regions
that do not include the global optimum. On the other hand, many solutions for range adaptation generally interfere
with the decrease in size of the search space. The solutions are selected at random according to their fitness given by
the following solution sets:

1) PRnon% non-dominated solutions from all solutions. (PRnon=100)
2) PRarc% solutions from the archive. (PRarc=0)
3) PRprs% solutions from the latest generation. (PRprs=0)
4) PRvio% solutions that violate the constraint. (PRvio=1, at least one design)

Solution set 4 is introduced to search near the boundary between feasible and infeasible solutions, as the global-
optimum for constraint problems is often located there. According to the amount of violation, violated designs are
sampled. The probabilities in bracket are used in this optimization. In this case, only non-dominated solutions with
several infeasible designs are selected to determine new design range.
2. Range Adaptation

In ARMOGAs, the search region is changed according to the population statistics of the average and the
standard deviation. The range adaptation adopts the Normal distribution to search global solutions efficiently. Figure
8 shows the normal distribution used for encoding in the real-coded ARGAs. The real value of the i-th design
variable pi is encoded to a real number ri defined in (0,1) such that ri is equal to the integrations of the normal
distribution from -∞ to pn,i:

 ! "#=
inp

i dzzNr
,

))(1,0((12a)

i

ii

in

p
p

!

µ"
=

,
 (12b)

where µi is the average of i-th phenotype design variable, and σi is the standard deviation of i-th phenotype design
variable.

SASAKI AND OBAYASHI

 53

ri

!" +" pn,i 0

pi=µi pi

Probability

xi

Fig. 8 Normal distribution for encoding in real-coded ARGAs.

Initial population

Evaluation

Selection

Crossover

Mutation

Termination criteria

Sampling

Range adaptation

Re-initialisation

Archive

Fig. 9 Flowchart of ARMOGAs.

x1L x1U

Probability
Probability

x x

x1L x1U

Superior solution

Inferior solution Search region

Search region

(a) Conventional MOEAs (b) ARMOGAs

Fig. 10 Sketch of search region.

The basic encoding system in ARMOGAs is the same as for real-coded ARGAs, but a straightforward extension
is not suitable to preserve the diversity of the population. To better preserve the diversity of candidate solutions, the
normal distribution for encoding has to be changed.

Figure 11 shows the search range with the distribution of probability. The search region is partitioned into three
parts, I, II, and III. Regions I and III make use of the same encoding method as ARGAs. The real value of i-th
design variable pi is encoded to a real number ri defined in (0,1). In contrast, region II adopts the conventional real-
number encoding method. The plateau region (region II) is defined by the upper and lower design variables of
chosen solutions. Then, the normal distribution is considered at both sides of the plateau determined by the average
(µi) and the standard deviation (σi). This encoding system is controlled by the parameters αr and fli, where αr (<0.5)
is the population ratio at region I and fli is half the length of the plateau at region II. The encoding is conducted at
each region described below.

Region I (pi ≤ µi − fli, 0 ≤ ri ≤ αr):

SASAKI AND OBAYASHI

 54

iri
rr !"=# (13a)

 ! "#=$
inp

i dzzNr
,

))(1,0((13b)

i

iii
in

flp
p

!

µ

2

)(
,

""
= (13c)

Region II (µi − fli < pi < µi + fli, αr < ri < 1−αr):

riri

rr !! +"#$=)21((13d)

()

i

iii
i

fl

flp
r

2
'

!!
=

µ
 (13e)

Region III (µi +  fli ≤ pi, 1−αr ≤ ri ≤ 1):

)1(
riri

rr !! "+#$= (13f)

 ! "#=$
inp

i dzzNr
,

))(1,0((13g)

i

iii
in

flp
p

!

µ

2

)(
,

+"
= (13h)

III. Results and Discussions
ARMOGAs are evaluated by applying them to four different types of MO analytical problems. ARMOGAs are

compared with another MOEA and two gradient-based methods: NSGA2 (a widely-used MOEA)2, SQP (efficient
gradient-based method)19 and DHC (robust gradient-based method)20. SQP and DHC in SOFT21 developed by Rolls-
Royce plc. and UTCs are used. These gradient-based methods require the following utility function f to solve MO
problems:

21
fff !+!= "# (14)

where f1 and f2 represent objective-function values, and α and β represent weights. By changing the weights, the
optimizer seeks different optimal solutions corresponding to the current utility function f. Therefore, trade-offs can
be obtained by changing the weights. In the figure, the following name (SQP_2.0-1.0) is used to represent the

SASAKI AND OBAYASHI

 55

different utility function. SQP_2.0-1.0 means optimizer is SQP, α  and β is set to 2.0 and 1.0, respectively. Initial
searching point and optimal solution is also indicated in the figure (O) and the table.

Probability

pi,min

pi

I II

!r < ri < 1"!r

III

µi µi"fli

fli

µi+fli

fli

0 # ri # !r

pi,max

1"!r # ri # 1

Fig. 11 Sketch of probability distribution of phenotype design variable pi in ARMOGAs.

0

1

2

3

4

0 1 2 3 4
f1

f2

Superior solutions

Inferior solutions

Global Pareto front

0

1

2

3

4

0 1 2 3 4
f1

f2

Superior solutions

Inferior solutions

Global Pareto front

0

1

2

3

4

0 1 2 3 4
f1

f2

Superior solutions

Inferior solutions

Global Pareto front

(a) Closeness (b) Spread (c) Sampling

Fig. 12 Superior and inferior non-dominated front considered in the present MO optimization.

The search performance of optimizers is evaluated in terms of closeness, reasonable spread, and many samplings
in the Pareto front as shown in Fig. 12. These characteristics will help to understand the trade-off between objectives.
ARMOGAs and NSGA2 use comparatively small number of evaluations for aerodynamic optimization problems
requiring time-consuming CFD. ARMOGAs generate different candidate designs all the time to prevent wasting
computational time evaluating the same design and also to use a Master-Slave type parallel processing of the
evaluation tool. The population size (pop) and the generation (gen) are set to eight and 20, respectively. On the other
hand, NSGA2 may create the same design if the number of design variables is small. To ensure all EAs are almost
same number of function evaluations (call), the total number of generations is set to 30 in NSGA2. When the
Master-Slave type parallelization of evaluation is adopted, ARMOGAs can obtain the result faster than NSGA2 in
this case.

Both ARMOGAs and NSGA2 adopt crossover rate 1.0, SBX crossover with ηc=2.0, mutation rate 0.1,
polynomial mutation with ηm=5.0. As GAs often depend on an initial population, three different initial populations
are used for the comparison. In ARMOGAs, range adaptation starts at fifth generation (Msa=5) and then the range
adaptation occurs every five generations (Mra=5). Three trials are performed by changing initial population because
MOEAs are stochastic approach.

A. Convex Pareto Front Case
This problem has two objective functions to be minimized as formulated below25:

 Minimize !
=

=
n

i

ix
n

f
1

2

1

1
)(x (15a)

SASAKI AND OBAYASHI

 56

 Minimize ()!
=

"=
n

i

ix
n

f
1

2 2
1

)(x (15b)

 subject to 2 ,1 ,44 =!!" ix
i

Pareto-optimal solutions have xi in [0,2] and the corresponding Pareto front is convex. The optimization was
conducted by ARMOGAs, NSGA2, SQP (2cases) and DHC (2cases). Figures 13 (a) and (b) show the optimization
results of ARMOGAs and NSGA2, respectively. Both MOEAs could obtain good spread of Pareto solutions.
Regarding the gradient-based method, weights of utility function [α and β in Eq. (14)] were changed to obtain trade-
offs as described in Table 1. Two different initial points were used for comparison. Table1 shows the numbers of
function calls, initial points, and optimal solutions. Figures 13 (c) and (d) show the search histories of SQP-1 and
DHC-1. Because this convex problem is easy to solve by gradient-based methods, simple gradient-based method,
SQP, could find the optimal solutions rapidly. These two algorithms obtained same final Pareto solutions according
to the utility function by changing the initial points as indicated in Table 1. The difference between two gradient-
based methods is the number of evaluations. SQP could obtain final Pareto solutions rapidly, but DHC required a
large number of evaluations similar to MOEAs.

0

1

2

3

4

0 1 2 3 4

f1

f2

ARMOGA00

ARMOGA01

ARMOGA02

FRONT

0

1

2

3

4

0 1 2 3 4

f1

f2

NSGA00

NSGA01

NSGA02

FRONT

pop gen call

ARMOGA00 8 20 168
ARMOGA01 8 20 168

ARMOGA02 8 20 168

pop gen call

NSGA00 8 30 164
NSGA01 8 30 161

NSGA02 8 30 161

(a) ARMOGAs (b) NSGAs

0

1

2

3

4

0 1 2 3 4
f1

f2

SQP_1.0-1.0
SQP_1.0-2.0
SQP_2.0-1.0
FRONT

0

1

2

3

4

0 1 2 3 4
f1

f2

DHC_1.0-1.0
DHC_1.0-2.0
DHC_2.0-1.0
FRONT

(c) SQP-1 (d) DHC-1

Fig. 13 Comparison of optimization results shown in the objective function space for convex Pareto front case.

SASAKI AND OBAYASHI

 57

Table 1 Optimization summary of gradient-based methods for convex Pareto front case

(a) SQP-1 (b) DHC-1

weight call initial optimal weight call initial optimal

1.0-1.0 6 (0.0, 4.0) (1.00, 1.00) 1.0-1.0 48 (0.0, 4.0) (1.00, 1.00)

1.0-2.0 9 (0.0, 4.0) (1.78, 0.44) 1.0-2.0 145 (0.0, 4.0) (1.78, 0.44)

2.0-1.0 9 (0.0, 4.0) (0.44, 1.77) 2.0-1.0 132 (0.0, 4.0) (0.44, 1.78)

(c) SQP-2 (d) DHC-2

weight call initial optimal weight call initial optimal

1.0-1.0 9 (9.0, 25.0) (1.00, 1.00) 1.0-1.0 39 (9.0, 25.0) (1.00, 1.00)

1.0-2.0 9 (9.0, 25.0) (1.78, 0.44) 1.0-2.0 139 (9.0, 25.0) (1.78, 0.44)

2.0-1.0 9 (9.0, 25.0) (0.44, 1.77) 2.0-1.0 121 (9.0, 25.0) (0.44, 1.78)

B. Concave Pareto Front Case
This problem has a concave Pareto front26: The problem is formulated as follows:

 Minimize

!

f1(x) = 1" exp " xi "
1

n

$
%

&

'
(

2

i=1

2

)

$

%
%

&

'

(
(
 (16a)

 Minimize

!

f2 (x) = 1" exp " xi +
1

n

$
%

&

'
(

2

i=1

2

)

$

%
%

&

'

(
(
 (16b)

 subject to 2 ,1 ,44 =!!" ix
i

The same six cases of optimization as the previous section were conducted. Figures 14 (a) and (b) show the non-
dominated front of ARMOGAs and NSGA2. Both GAs could obtain approximate Pareto solutions with reasonable
spread. All the results of gradient-based method is summarized in Table 2. SQP-1 could obtain Pareto solutions at
three cases, but SQP-2 could not obtain Pareto solutions, which started from different initial points. DHC-2 started
from the same point as SQP-2, but it was able to find the global Pareto solutions because DHC is a more robust
approach. The gradient-based methods with weight function could find global optima, but it was difficult to obtain
trade-offs because a final optimal solution always reaches the extreme Pareto solution as shown in Figs 14 (c) and
(d). Figures 15 (a) and (b) show contours of the objective-function f1 and f2 for design variables x1 and x2. Figure 15
(c) shows contour of utility function f with α=2.0 and β=1.0. Even if the utility function is changed, only the optima
of either objective function f1 or f2 is finally obtained. When the utility function is used to identify trade-offs of
concave Pareto front cases, optimizers can only obtain the extreme optimal solutions.

SASAKI AND OBAYASHI

 58

Table 2 Optimization summary of gradient-based methods for concave Pareto front case

(a) SQP-1 (b) DHC-1

weight call initial optimal weight Call initial optimal

1.0-1.0 3 (0.63, 0.63) 1.0-1.0 99 (0.63, 0.63) (0.00, 0.98)

1.0-2.0 17 (0.63, 0.63) (0.98, 0.00) 1.0-2.0 113 (0.63, 0.63) (0.98, 0.00)

2.0-1.0 17 (0.63, 0.63) (0.00, 0.98) 2.0-1.0 136 (0.63, 0.63) (0.00, 0.98)

1.0-1.2 26 (0.63, 0.63) (0.98, 0.00)

(c) SQP-2 (d) DHC-2

weight call Initial optimal weight Call initial optimal

1.0-1.0 6 (1.0,1.0) 1.0-1.0 104 (9.0, 25.0) (0.98, 0.00)

1.0-2.0 3 (1.0,1.0) 1.0-2.0 100 (9.0, 25.0) (0.98, 0.00)

2.0-1.0 3 (1.0,1.0) 2.0-1.0 128 (9.0, 25.0) (0.00, 0.98)

C. Discontinuous Pareto Front Case
This problem has a nonconvex as well as disconnected Pareto-optimal set, composed of three disconnected

Pareto-optimal fronts and single point (-20,0).27 The formulation is as follows:

 Minimize

!

f1(x) = "10 exp "0.2 xi
2

+ xi+1
2#

$
%

&

'
(

)

* +
,

- . i=1

2

/ (17a)

 Minimize ()! =
+=

3

1

38.0

2 sin5)(
i ii xxf x (17b)

 subject to 3 ,2 ,1 ,55 =!!" ix
i

SASAKI AND OBAYASHI

 59

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f1

f2

ARMOGA00

ARMOGA01

ARMOGA02

FRONT

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f1

f2

NSGA00

NSGA01

NSGA02

FRONT

ARMOGA pop gen call

00 8 20 168

01 8 20 168
02 8 20 168

NSGA pop gen call

00 8 30 159

01 8 30 108
02 8 30 171

(a) ARMOGAs (b) NSGA2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
f1

f2

SQP_1.0-1.0
SQP_1.0-2.0
SQP_2.0-1.0
SQP_1.0-1.2
FRONT

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
f1

f2

DHC_1.0-1.0

DHC_1.0-2.0

DHC_2.0-1.0

FRONT

(c) SQP-1 (d) DHC-1

Fig. 14 Comparison of optimization results shown in the objective function space for concave Pareto front
case.

ARMOGAs could obtain better spread in non-dominated front compared to NSGA2 as shown in Fig. 16. As the
number of evaluations is small, only the overview of the trade-offs were identified. Figures 16 (c) – (f) show the
search history of gradient-based methods. Table 3 summarizes the optimization results. DHC obtained similar
optima even by changing utility functions. SQP could not search Pareto solutions, and it could only find a local
optima of the utility function. These figures show the danger in the use of utility function because it is possible to
misunderstand the trade-off between objectives.

D. Constrained Test Case
It is common that there are many constraints when solving industrial optimization problems. In this section, a

constrained analytical test problem solved by MOEAs is described. This problem is formulated as follows1:

 11)(xf =x (18a)

1

2
1

1
)(

x

x
f

+
=x (18b)

 subject to 096)(121 !""= xxg x (18c)

SASAKI AND OBAYASHI

 60

 091)(122 !"+= xxg x (18d)

 11.0
1
!! x 50

2
!! x

This problem has two objective functions and two constraints. The real Pareto front is cut by the constraints as
shown in Fig. 17. Two different constraint-handling techniques are used in ARMOGAs. The constrained Pareto
ranking method is used in ARMOGA-CP. On the other hand, ARMOGA-CG always evaluates feasible designs by
preventing the generation of infeasible designs. Briefly, all new individuals are generated repeatedly until they
satisfy the two constraints. Table 4 describes the optimization conditions for ARMOGAs and NSGA2. Figure 18
shows the non-dominated solutions of the three methods. Both ARMOGAs could obtain the approximate Pareto
front, which is well-dispersed along the real Pareto front. In contrast, NSGA2 could obtain many non-dominated
solutions just around the lower region, but failed to obtain the Pareto front cut by the constraint. When the results of
both ARMOGAs are compared, the non-dominated solutions of ARMOGA-CP are closer to the Pareto front than
these of ARMOGA-CG. This is because ARMOGA-CG could not create design candidates that were located close
to the constraints because the method generated new designs only in the feasible region. In terms of obtaining trade-
offs, ARMOGA-CG was able to find reasonable non-dominated solutions. The method would be practical for
constrained multi-objective aerodynamic optimization problems to avoid CFD computation of hopeless designs that
are infeasible.

Table 3 Optimization summary of gradient-based methods for discontinuous Pareto front case

(a) SQP-1 (b) DHC-1

weight call initial optimal weight call initial optimal

1.0-1.0 14 (-20.0, 0.0) 1.0-1.0 115 (-20.0, 0.0) (-14.52, -11.58)

1.0-2.0 14 (-20.0, 0.0) 1.0-2.0 160 (-20.0, 0.0) (-14.48, -11.62)

2.0-1.0 14 (-20.0, 0.0) 2.0-1.0 33 (-20.0, 0.0)

1.0-50.0 97 (-20.0, 0.0) (-9.75, -8.44) 1.0-50.0 138 (-20.0, 0.0) (-14.44, -11.63)

(c) SQP-2 (d) DHC-2

weight call initial optimal weight call initial optimal

1.0-1.0 43 (-8.6, 21.6) (-7.26, -4.58) 1.0-1.0 170 (-8.6, 21.6) (-14.52, -11.58)

1.0-2.0 45 (-8.6, 21.6) (-7.47, -7.57) 1.0-2.0 163 (-8.6, 21.6) (-14.48, -11.62)

2.0-1.0 49 (-8.6, 21.6) (-8.40, -7.41) 2.0-1.0 152 (-8.6, 21.6) (-11.64, -9.64)

1.0-50.0 59 (-8.6, 21.6) (-7.87, -6.91) 1.0-50.0 170 (-8.6, 21.6) (-11.56, -9.72))

SASAKI AND OBAYASHI

 61

Table 4 Conditions of optimization for constrained test problem

(a) ARMOGA-CP and ARMOGA-CG (b) NSGA2

 pop generation call pop generation call

ARMOGA-1 8 20 168 NSGA2-1 8 30 157

ARMOGA-2 8 20 168 NSGA2-2 8 30 142

ARMOGA-3 8 20 168 NSGA2-3 8 30 165

x2

x1
f1

x2

x1
f2

x2

x1
f

 (a) Objective function f1 (b) Objective function f2 (c) Utility function f (α=2.0, β=1.0)

Fig. 15 Contours of objective functions f1, f2 and utility function f for design variable x1, x2.

-14

-12

-10

-8

-6

-4

-2

0

2

-20 -18 -16 -14

f1

f2

ARMOGA00

ARMOGA01

ARMOGA02

FRONT

-14

-12

-10

-8

-6

-4

-2

0

2

-20 -18 -16 -14

f1

f2

NSGA00

NSGA01

NSGA02

FRONT

ARMOGA pop gen call

00 8 20 168

01 8 20 168

02 8 20 168

NSGA pop gen call

00 8 30 156

01 8 30 167

02 8 30 165

(a) ARMOGAs (b) NSGA2

SASAKI AND OBAYASHI

 62

-14

-12

-10

-8

-6

-4

-2

0

2

4

-20 -18 -16 -14 -12 -10 -8
f1

f2

DHC_1.0-1.0
DHC_1.0-2.0

DHC_2.0-1.0
DHC_1.0-50.0

FRONT

-14

-12

-10

-8

-6

-4

-2

0

2

4

-20 -18 -16 -14 -12 -10 -8
f1

f2

SQP_1.0-1.0
SQP_1.0-2.0
SQP_2.0-1.0
SQP_1.0-50.0
FRONT

(c) SQP-1 (d) DHC-1

-14

-12

-10

-8

-6

-4

-2

0

2

4

-20 -18 -16 -14 -12 -10 -8
f1

f2

SQP_1.0-1.0

SQP_1.0-2.0

SQP_2.0-1.0
SQP_1.0-50.0

FRONT
-14

-12

-10

-8

-6

-4

-2

0

2

4

-20 -18 -16 -14 -12 -10 -8
f1

f2

DHC_1.0-1.0
DHC_1.0-2.0

DHC_2.0-1.0
DHC_1.0-50.0

FRONT

(e) SQP-2 (f) DHC-2

Fig. 16 Comparison of optimization results shown in the objective function space for discontinuous Pareto
front case.

Fig. 17 Pareto front of constrained problem.

SASAKI AND OBAYASHI

 63

0

1

2

3

4

5

6

7

8

9

10

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

f2

ARMOGA00

ARMOGA01

ARMOGA02

FRONT

0

1

2

3

4

5

6

7

8

9

10

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

f2

ARMOGA00

ARMOGA01

ARMOGA02

FRONT

(a) ARMOGA-CP (b)ARMOGA-CG

0

1

2

3

4

5

6

7

8

9

10

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

f2

NSGA00

NSGA01

NSGA02

FRONT

(c) NSGA2

Fig. 18 Comparison of optimization results in the objective-function space for constrained test case.

IV. � Conclusion
In this study, real-coded ARMOGAs, which aims to find non-dominated solutions efficiently, were presented.

ARMOGAs were developed to solve multi-objective optimization problems based on real-coded ARGAs. The
sophisticated encoding system composed of the normal distribution and the plateau region is adopted to maintain
diversity of population. To determine the new search region by range adaptation, designs are sampled based on the
archiving technique. Constraint-handling techniques are also introduced in the sampling procedure.

The performance of ARMOGAs was examined using four analytical test problems. ARMOGAs showed
reasonable search performance in all cases. These test problems were also solved by NSGA2 and two gradient-based
methods (SQP and DHC) for comparison. ARMOGAs were able to find a reasonable quality non-dominated front
using a small number of function evaluations comparable to DHC. On the other hand, gradient-based methods were
not suitable for obtaining trade-offs, although DHC was slightly more robust than SQP. The performance of NSGA2
was compared to ARMOGAs for unconstrained test problems. However, NSGA2 could not find well-dispersed non-
dominated solutions of a constrained test problem. Therefore, ARMOGAs will be useful for multi-objective and/or
multi-disciplinary aerodynamic optimization with time-consuming high-fidelity CFD.

Acknowledgments
The authors would like to thank Dr. Shahpar, who is an aerothermal design specialist at the Aerothermal

Methods Group, Rolls-Royce plc, Derby, United Kingdom. This research was performed during the first author’s
stay at Rolls-Royce plc under the industrial trainee program.

SASAKI AND OBAYASHI

 64

References
1Deb, K., Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons, Ltd., Chichester, 2001.
2Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., “A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II,”

Proceedings of the Parallel Problem Solving from Nature VI Conference, 2000.
3Fonseca, C. M., and Fleming, P. J., “Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and

Generalization,” Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, Inc.,
San Mateo, CA, 1993, pp. 416-423.

4Obayashi, S., Takahashi, S., and Takeguchi, Y., “Niching and Elitist Models for MOGAs,” Proceedings of Parallel Problem
Solving from Nature – PPSN V, Lecture Notes in Computer Science 1498, Springer, Berlin, 1998, pp. 260-269.

5Obayashi, S., Tsukahara, T., and Nakamura, T., “Multiobjective Genetic Algorithm Applied to Aerodynamic Design of
Cascade Airfoils,” IEEE Transactions on Industrial Electronics, Vol. 47, No. 1, 2000, pp. 211-216.

6Obayashi, S., Sasaki, D., Takeguchi, Y., and Hirose, N., “Multiobjective Evolutionary Computation for Supersonic Wing-
Shape Optimization,” IEEE Transactions on Evolutionary Computation, Vol. 4, No. 2, 2000, pp. 182-187.

7Sasaki, D., Obayashi, S., and Nakahashi, K., “Navier-Stokes Optimization of Supersonic Wings with Four Objectives Using
Evolutionary Algorithm,” Journal of Aircraft, Vol. 39, No. 4, 2002, pp. 621-629.

8Sasaki, D., Yang, G., and Obayashi, S., “Automated Aerodynamic Optimization System for SST Wing-Body
Configuration,” Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 46, No. 154, 2004, pp. 230-237.

9Sasaki, D., Shahpar, S., and Obayashi, S., “Multi-Objective Optimization of Low Pressure Compression System,”
Proceedings of the 24th of International Congress of the International Council of the Aeronautical Sciences (CD-ROM), ICAS
2004-6.2.2, 2004.

10Oyama, A., Liou M.-S., “Multiobjective Optimization of Rocket Engine Pumps Using Evolutionary Algorithm,” AIAA
Journal of Propulsion and Power, Vol. 18, No. 3, pp. 528-535, 2003.

11Kanazaki, M., Obayashi, S., and Nakahashi, K., “Exhaust Manifold Design with Tapered Pipes using Divided Range
MOGA,” Engineering Optimization, Vol. 36, No. 2, pp. 149-163, 2004.

12Chiba, K., Obayashi, S., Nakahashi, K., and Morino, H., “Multidisciplinary Design Optimization of Wing Shape for
Regional Jet,” Proceedings of 4th International Symposium on Advanced Fluid Information, 2004.

13Mäkinen, R. A. E., Périaux, J., and Toivanen, J., “Multidisciplinary Shape Optimization in Aerodynamics and
Electromagnetics using Genetic Algorithms,” International Journal for Numerical Methods in Fluids, Vol. 30, 1999, pp. 149-159.

14Poloni, C., Pediroda, V., and Bucchieri, L, “Multi Objective Optimization of Turbine Blades by TASCFlow and
FRONTIER on a Linux Cluster,” CFX USERS MEETING, 2000.

15Padovan, L., Pediroda, V., and Poloni, C., “Multi Objective Robust Design Optimization of Airfoils in Transonic Fields
(M.O.R.D.O.),” Proceedings of Evolutionary Methods for Design, Optimization and Control with Applications to Industrial
Problems (CD-ROM), CIMNE, 2003.

16Arakawa, M., and Hagiwara, I., “Development of Adaptive Real Range (ARRange) Genetic Algorithms,” JSME
International Journal, Series C, Vol. 41, No. 4, 1998, pp. 969-977.

17Arakawa, M., and Hagiwara, I., “Nonlinear Integer, Discrete and Continuous Optimization Using Adaptive Range Genetic
Algorithms,” Proceedings of 1997 ASME Design Engineering Technical Conferences, 1997.

18Oyama, A., Obayashi, S., and Nakamura, T., “Real-Coded Adaptive Range Genetic Algorithm Applied to Transonic Wing
Optimization,” Applied Soft Computing, Vol. 1, No. 3, 2001, pp. 179-187.

19DOT USERS MANUAL, Vanderplaats, R&W, Inc., Colorado Springs, CO, 1999.
20Yuret, D., and de la Maza, M., “Dynamic Hill Climbing: Overcoming the Limitations of Optimization Techniques,”

Proceedings of the Second Turkish Symposium on Artificial Intelligence and Neural Networks, 1993, pp. 208-212.
21Shahpar, S., “SOFT: A New Design and Optimization Tool for Turbomachinery,” Proceedings of Evolutionary Methods for

Design, Optimization and Control, CIMNE, 2002.
22Bäck, T., Fogel, D. B., and Michalewicz, Z, Handbook of Evolutionary Computation, IOP Publishing Ltd. and Oxford Univ.

Press, 1997.
23Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Publishing

Company, Inc., Reading, MA, 1989.
24Baker, J. E., “Reducing Bias and Inefficiency in the Selection Algorithm,” Proceedings of the Second International

Conference on Genetic Algorithms, Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1987, pp.14-21.
25Yaochu, J., Okabe, T., and Sendhoff, B., “Adapting Weighted Aggregation for Multiobjective Evolution Strategies,”

Proceedings of Evolutionary Multi-Criterion Optimization 2001, Lecture Notes in Computer Science 1993, 2001, pp. 96-110.
26Fonseca, C. M., and Fleming, P. J., “An Overview of Evolutionary Algorithms in Multi-Objective Optimization,”

Evolutionary Computation Journal, Vol. 3, No. 1, 1995, pp. 1-16.
27Kursawe, F., “A Variant of Evolution Strategies for Vector Optimization,” Proceedings of Parallel Problem Solving from

Nature I (PPSN-I), 1990, pp. 193-197.

